文章介绍
宽带隙 (WBG) 钙钛矿太阳能电池 (PSC) 对于提高串联太阳能电池的效率至关重要,但存在严重的光电压不足和卤化物偏析,大大降低了其性能和稳定性。基于此,北京理工大学李红博等人开发了一种纳米晶-核模板 (NCNT) 策略,通过精确匹配纳米晶体的 I/Br 比与目标钙钛矿薄膜的 I/Br 比,直接解决异质成核——相分离的根本原因。这种方法指导 Pb-I/Br 八面体的均质组装,实现 WBG 薄膜出色的卤化物均匀性和精确的结晶控制。NCNT 同时诱导 p 型掺杂并降低钙钛矿/C60 界面能垒,显着增强电荷提取。值得注意的是,通过这种方法制造的 1.68 eV WBG PSC 实现了创纪录的 1.30 V 开路电压 (VOC),同时具有 23.4% 的冠军效率。该策略的广泛适用性在 1.63-1.76 eV 的宽带隙范围内得到证明,所有带隙均表现出 (001) 优取的方向和出色的光稳定性。当集成到 0.945 cm2 单片钙钛矿/硅叠层太阳能电池中时,基于 NCNT 的器件可提供 32.0% 的高效率(认证 31.7%)。这项工作强调了纳米晶体在调节钙钛矿结晶中的关键作用,解决了 WBG 钙钛矿中长期存在的 VOC 限制,并为下一代光电器件和串联光伏建立了一个可扩展的平台。该论文近期以“Nanocrystal-Nucleus Template Strategy for Efficient Wide-Bandgap Perovskite Solar Cells with Enhanced Homogeneity and Energy-Level Alignment”为题发表在顶级期刊Advanced Materials上。
图1. NCNT策略提高了钙钛矿薄膜的质量。a-c)使用CB、OCT和OCT-NC处理制备的膜的GIWAXS图案。d-f)三种宽带隙钙钛矿膜:WBG-A、WBG-B和WBG-C的XRD图案。g,h)从0°到50°扫描的对照和目标WBG-B膜的GIXRD图案。i,j)从底部、中心和表面区域比较对照和目标组的HRTEM图像。
图2. 通过NCNT策略实现的结晶过程的分析。a)CsPb(I0.74Br 0.26)3 NCs的TEM图像。B)(a)中所示的NC的HRTEM图像和相应的傅立叶变换图案。c-f)对照组和目标组的薄膜的原位GIWAXS图案和相应的的强度分布。g,h)对照组和实验组的膜的原位PL光谱i)钙钛矿结晶过程的示意图。
图3. 钙钛矿膜的光电性质。a)紫外-可见吸收和光致发光(PL)光谱,B)时间分辨光致发光(TRPL)光谱,和c,d)对照组和目标组的开尔文探针力显微镜(KPFM)图像。e)C60、对照膜和用0.1 mg mL-1的NC浓度制备的膜的紫外光电子能谱(UPS)结果(NC-0.1)、0.2 mg mL−1 NC-0.2(目标)和0.3 mg mL−1 f)从UPS导出的费米能级(EF)、价带最大值(VBM)和导带最小值(CBM)的结果为(e)。h)对照组和靶组的膜中电子和空穴传输的示意图。在异质结界面处的电场矢量中。
图4. 器件性能表征。a)目标组和对照组具有1.68 eV带隙的器件的冠军功率转换效率(PCE)。B)目标组和对照组的器件的EQE。c)具有不同带隙的代表性PSC的报告VOC值的总结。d)对照组和具有不同NC浓度的目标组的10个器件的统计性能分布(0.1、0.2和0.3 mg mL-1)。e)钙钛矿/硅叠层太阳能电池的器件结构示意图。f)钙钛矿/硅叠层太阳能电池的冠军PCE。g)钙钛矿/硅串联太阳能电池的EQE光谱。h)钙钛矿/硅串联太阳能电池的SPO。
总之,作者提出了一种纳米晶-晶核模板(NCNT)策略来制备具有上级卤素均匀性和晶体学取向的混合卤化物钙钛矿薄膜。通过使用非晶相CsPb(I 1-xBrx)3作为晶核模板,该方法抑制了富Br畴的形成并消除了。
特别声明:本站转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。
浙江省太阳能光伏行业协会





